27 research outputs found

    Neutron star solutions in perturbative quadratic gravity

    Full text link
    We study the structure of neutron stars in R+\beta\ R^{\mu \nu} R_{\mu \nu} gravity model with perturbative method. We obtain mass--radius relations for six representative equations of state (EoSs). We find that, for |\beta| ~ 10^11 cm^2, the results differ substantially from the results of general relativity. Some of the soft EoSs that are excluded within the framework of general relativity can be reconciled for certain values of \beta\ of this order with the 2 solar mass neutron star recently observed. For values of \beta\ greater than a few 10^11 cm^2 we find a new solution branch allowing highly massive neutron stars. By referring some recent observational constraints on the mass--radius relation we try to constrain the value of \beta\ for each EoS. The associated length scale \sqrt{\beta} ~ 10^6 cm is of the order of the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of \beta\ is most likely much smaller than 10^11 cm^2.Comment: 19 pages, 9 figures. v2: Analysis on validity of perturbative approach is added. References added. v3: Aesthetic improvement

    Proton tunneling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis

    Full text link
    The role of proton tunneling in biological catalysis is investigated here within the frameworks of quantum information theory and thermodynamics. We consider the quantum correlations generated through two hydrogen bonds between a substrate and a prototypical enzyme that first catalyzes the tautomerization of the substrate to move on to a subsequent catalysis, and discuss how the enzyme can derive its catalytic potency from these correlations. In particular, we show that classical changes induced in the binding site of the enzyme spreads the quantum correlations among all of the four hydrogen-bonded atoms thanks to the directionality of hydrogen bonds. If the enzyme rapidly returns to its initial state after the binding stage, the substrate ends in a new transition state corresponding to a quantum superposition. Open quantum system dynamics can then naturally drive the reaction in the forward direction from the major tautomeric form to the minor tautomeric form without needing any additional catalytic activity. We find that in this scenario the enzyme lowers the activation energy so much that there is no energy barrier left in the tautomerization, even if the quantum correlations quickly decay.Comment: 15 pages, 4 figures. Authors postprint versio

    Emergence of correlated proton tunneling in water ice

    Full text link
    Several experimental and theoretical studies report instances of concerted or correlated multiple proton tunneling in solid phases of water. Here, we construct a pseudo-spin model for the quantum motion of protons in a hexameric H2_2O ring and extend it to open system dynamics that takes environmental effects into account in the form of O−-H stretch vibrations. We approach the problem of correlations in tunneling using quantum information theory in a departure from previous studies. Our formalism enables us to quantify the coherent proton mobility around the hexagonal ring by one of the principal measures of coherence, the l1l_1 norm of coherence. The nature of the pairwise pseudo-spin correlations underlying the overall mobility is further investigated within this formalism. We show that the classical correlations of the individual quantum tunneling events in long-time limit is sufficient to capture the behaviour of coherent proton mobility observed in low-temperature experiments. We conclude that long-range intra-ring interactions do not appear to be a necessary condition for correlated proton tunneling in water ice.Comment: 26 pages, 11 figures, 2 tables. Electronic supplementary material is appende

    Neutron stars in a perturbative f(R)f(R) gravity model with strong magnetic fields

    Full text link
    We investigate the effect of a strong magnetic field on the structure of neutron stars in a model with perturbative f(R)f(R) gravity. The effect of an interior strong magnetic field of about 1017∼1810^{17 \sim 18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) model. We solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R)=R+αR2f(R)=R+\alpha R^2. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α\alpha along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large (>2> 2 M⊙_\odot) maximum neutron star mass through the modified mass-radius relation
    corecore